Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(47): 30386-30403, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36349158

RESUMO

It is generally recognized that the stability of nanoparticles (NPs) has a great impact on their potential biological applications. Despite this, very few studies have investigated the change in toxicity of NPs over time but none has studied the periodic physicochemical changes contributing to it. To address this, we analyzed the effects of long-term storage on the physicochemical changes of green synthesized silver nanoparticles (AgNPs) that directly influences their antimicrobial durability. Light-induced slow synthesis of AgNPs was carried out using Saraca asoca aqueous leaf extract. The synthesis was optimized with respect to parameters known to play a major role in the long-term stability of AgNPs: pH, temperature, light exposure time, AgNO3 concentration, extract proportion in the reaction mixture and storage conditions. Freshly synthesized AgNPs were characterized and then stored under optimized conditions. UV-vis spectrophotometry, AAS, conventional TEM and HR-TEM along with EDX spectroscopy were used at regular intervals to test the physicochemical properties that influence their long-term stability. Broth dilution assay was used to test antimicrobial activity of AgNPs against Escherichia coli and Staphylococcus aureus. Under dark storage conditions at room temperature, the AgNPs exhibited excellent stability with very good dispersity, throughout the study period of 18 months, despite the particles undergoing physicochemical changes in largescale. AgNPs exhibited sufficient antimicrobial activity against both strains tested. Due to the stronger stabilizing effect of the extract, we observed the lowest inhibition of E. coli and S. aureus by the freshly synthesized and 15 day old AgNPs; however, the inhibition rate escalated after a month and the highest rate of inhibition was observed with the particles between 2 months to 6 months of storage. After 6 months, we observed the particles losing their antimicrobial potential gradually, that lasted throughout the rest of our study period. This observation was in accord with the physicochemical changes that AgNPs were undergoing with time. By deepening our understanding of the changes in the physicochemical properties of green synthesized AgNPs over time, this study contributes to the development of more effective, durable, and potent AgNPs.

2.
Environ Toxicol Chem ; 41(4): 896-904, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34101905

RESUMO

The effects of combined exposure to microplastics and contaminants are still not completely understood. To fill this gap, we assessed the effects of polyethylene terephthalate microplastic fibers (100 mg/L; 360 µm average length) on the toxicity of silver nanoparticles (AgNPs; 32 nm) and silver nitrate (AgNO3 ; 0.1-10 µg Ag/L) to Daphnia magna. Acute immobilization (median effect concentration [EC50]) and cellular energy allocation (CEA; ratio between available energy and energy consumption) were determined in neonates (<24 h old) and juveniles (7 d old), respectively. The 48-h EC50 for AgNP and AgNO3 (2.6 and 0.67 µg Ag/L, respectively) was not affected by the presence of microplastic fibers (2.2 and 0.85 µg Ag/L, respectively). No decrease in the available energy was observed: lipid, carbohydrate, and protein contents were unaffected. However, a significant increase in energy consumption was observed in animals exposed to AgNO3 (250% compared with control) and to the combination of microplastic fibers with AgNP (170%) and AgNO3 (260%). The exposure to microplastic fibers alone or in combination with both Ag forms decreased the CEA (values were 55-75% of control values). Our results show that after short-term exposure (48 h), microplastic fibers increased Ag toxicity at a subcellular level (i.e., CEA), but not at the individual level (i.e., immobilization). These results highlight the importance of combining different levels of biological organization to fully assess the ecotoxicological effects of plastics in association with environmental contaminants. Environ Toxicol Chem 2022;41:896-904. © 2021 SETAC.


Assuntos
Nanopartículas Metálicas , Poluentes Químicos da Água , Animais , Antígeno Carcinoembrionário/metabolismo , Antígeno Carcinoembrionário/farmacologia , Daphnia , Nanopartículas Metálicas/toxicidade , Microplásticos , Plásticos/metabolismo , Plásticos/toxicidade , Prata/metabolismo , Prata/toxicidade , Nitrato de Prata/metabolismo , Nitrato de Prata/toxicidade , Poluentes Químicos da Água/metabolismo
3.
Cancers (Basel) ; 13(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34572790

RESUMO

Fifteen selenocompounds, comprising of eight ketone-containing selenoesters (K1-K8, also known as oxoselenoesters) and seven cyano-containing selenoesters (N1-N7, known also as cyanoselenoesters), have been designed, synthesized, and evaluated as novel anticancer agents. These compounds are derivatives of previously reported active selenoesters and were prepared following a three-step one-pot synthetic route. The following evaluations were performed in their biological assessment: cytotoxicity determination, selectivity towards cancer cells in respect to non-cancer cells, checkerboard combination assay, ABCB1 inhibition and inhibition of ABCB1 ATPase activity, apoptosis induction, and wound healing assay. As key results, all the compounds showed cytotoxicity against cancer cells at low micromolar concentrations, with cyanoselenoesters being strongly selective. All of the oxoselenoesters, except K4, were potent ABCB1 inhibitors, and two of them, namely K5 and K6, enhanced the activity of doxorubicin in a synergistic manner. The majority of these ketone derivatives modulated the ATPase activity, showed wound healing activity, and induced apoptosis, with K3 being the most potent, with a potency close to that of the reference compound. To summarize, these novel derivatives have promising multi-target activity, and are worthy to be studied more in-depth in future works to gain a greater understanding of their potential applications against cancer.

4.
Nanoscale Res Lett ; 16(1): 47, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721118

RESUMO

Noble metals have played an integral part in human history for centuries; however, their integration with recent advances in nanotechnology and material sciences have provided new research opportunities in both academia and industry, which has resulted in a new array of advanced applications, including medical ones. Noble metal nanoparticles (NMNPs) have been of great importance in the field of biomedicine over the past few decades due to their importance in personalized healthcare and diagnostics. In particular, platinum, gold and silver nanoparticles have achieved the most dominant spot in the list, thanks to a very diverse range of industrial applications, including biomedical ones such as antimicrobial and antiviral agents, diagnostics, drug carriers and imaging probes. In particular, their superior resistance to extreme conditions of corrosion and oxidation is highly appreciated. Notably, in the past two decades there has been a tremendous advancement in the development of new strategies of more cost-effective and robust NMNP synthesis methods that provide materials with highly tunable physicochemical, optical and thermal properties, and biochemical functionalities. As a result, new advanced hybrid NMNPs with polymer, graphene, carbon nanotubes, quantum dots and core-shell systems have been developed with even more enhanced physicochemical characteristics that has led to exceptional diagnostic and therapeutic applications. In this review, we aim to summarize current advances in the synthesis of NMNPs (Au, Ag and Pt).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...